skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "WANG, LIMEI"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 23, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Abstract MotivationProperties of molecules are indicative of their functions and thus are useful in many applications. With the advances of deep-learning methods, computational approaches for predicting molecular properties are gaining increasing momentum. However, there lacks customized and advanced methods and comprehensive tools for this task currently. ResultsHere, we develop a suite of comprehensive machine-learning methods and tools spanning different computational models, molecular representations and loss functions for molecular property prediction and drug discovery. Specifically, we represent molecules as both graphs and sequences. Built on these representations, we develop novel deep models for learning from molecular graphs and sequences. In order to learn effectively from highly imbalanced datasets, we develop advanced loss functions that optimize areas under precision–recall curves (PRCs) and receiver operating characteristic (ROC) curves. Altogether, our work not only serves as a comprehensive tool, but also contributes toward developing novel and advanced graph and sequence-learning methodologies. Results on both online and offline antibiotics discovery and molecular property prediction tasks show that our methods achieve consistent improvements over prior methods. In particular, our methods achieve #1 ranking in terms of both ROC-AUC (area under curve) and PRC-AUC on the AI Cures open challenge for drug discovery related to COVID-19. Availability and implementationOur source code is released as part of the MoleculeX library (https://github.com/divelab/MoleculeX) under AdvProp. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less